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1. INTRODUCTION

The return of manned and unmanned satellites and space vehicles to the earth's
surface with their structure intact is one of the most important problems in astronautics
today. During re-entry of a space vehicle through the atmosphere, extremely high
velocities are encountered. For instance, at return from a lunar mission nearly para-
bolic velocity (11.3 km/sec), corresponding to about Mach number 35, is reached.
Strong heating, starting behind the shockwave, occurs particularly in the stagnation
point region of the re~entering space vehicle (in case of parabolic velocity up to a
maximum of 11,000°K at 60 km altitude). Already at much smaller velocities, namely
for flight above Mach number 3, air no longer behaves as a perfect gas, and with
increasing Mach number, molecular vibration, dissociation, electronic excitation,
ionization, and ultimately complete plasma formation progressively take place. These
phenomena will change considerably the chemical composition of the air and this
change will extend along the body.

Since in most hypersonic applications, the flow has insufficient time to obtain ther-
modynamic equilibrium, there will generally be non-equilibrium flow in the shock layer.
There also exist two limiting cases. Depending on the specific free stream velocity,
density, temperature, atmospheric composition, and the absolute size of the body, the
flow may be either almost frozen, or the flow may reach very nearly equilibrium.

The calculation of hypersonic tiow fieids obviousiy requiies thermedynamic and
chemical kinetic relations which include the above mentioned real gas effects and the
intermediate reactions and products. Since rigorous mathematical expression of such
relations would be very complex, this paper uses a simplified air model, formerly intro-
duced and used by the author (Ref. 1,2,3), consisting of oxygen and nitrogen only.

For specific flow calculations so far, we further restrict the application to the tempera-
ture range in which only oxygen dissociation occurs. Even with these thermodynamic
simplifications the computational efforts required to calculate flow around blunt or
pointed bodies are very extensive. The use of the simplified air model, however, enables

us to show the basic features of equilibrium, non-equilibrium, and frozen flow.



2. NON-EQUILIBRIUM FLOW, HYPERSONIC FLOW FIELDS,
AND FLIGHT REGIONS

2.1 Description of Equilibrium Flow, Non-Equilibrium Flow, and Frozen Flow

Before we can discuss non-equilibrium, equilibrium, and frozen flow, we
have to define thermodynamic equilibrium of a gas at rest. A gas at rest is, by defi-
nition, in thermodynomic equilibrium, if a particular volume of the gas has sufficient,
or better infinite, time to bring all its internal modes of energy in equilibrium with the
translational energy of the molecular motion. For our consideration those modes are
molecular vibration, dissociation, electronic excitation, and ionization. It is justified
to assume in our calculations that the rotational energy of the gas molecules is always
in equilibrium with the translational energy.

Now considering flow processes of a gas, it is obvious that equilibrium flow
is only one limiting case, namely when the changes of the state of the gas
flowing along a streamline are so slow that at any point equilibrium is obtained, or
stated more exactly, equilibrium is very closely approached. At hypersonic velocities,
the time available is, in general, too short for the gas particles which are undergoing
rapid density, temperature, and composition changes to reach thermodynamic equili-
brium. Hence, in general, we have non-equilibrium flow. The degree of molecular
vibration, ihe deyiee of disscciction (chemical composition), and the degree of ioni-
zation will still change from point to point along the streamline but will not reach
thermodynamic equilibrium at any point.

Another limiting case occurs when the gas moves so fast that the internal
energy modes have no time to follow the changing density and temperature with the
result that the vibrational energy, the energy in dissociation, and the energy in ioni-
zation stay very nearly constant. We call this flow frozen; the gas might be vibration-
ally frozen, and/or chemically frozen (frozen dissociation or no change in degree of
dissociation), and/or the gas has frozen ionization.

After this qualitative discussion we can define the themodynamic behavior

more exactly as follows:



At hypersonic velocities, as encountered during re-entry, a major fraction of
the free stream kinetic energy is transfomed into thermal! energy behind the shock wave,
causing excited molecular vibration, dissociation, and ionization. These higher energy
states of a gas are caused by the collisions of two respective particles, such as mole-
cules, atoms, ions and electrons. Simultaneously, there are also the reverse processes
occurring called recombination (of dissociation) or recombination (of ionization), due
to another type, the so-called three-body collision. It should be noted that the
equilibrium state is a dynamic state where, for otherwise fixed conditions, the processes
of dissociation, ionization, and recombination are continuously occurring and are bal-
ancing each other. In general, a large number of collisions among the particles is
required to equilibrate the energy of molecular vibration, dissociation, ionization,
and other modes of excitation with the molecular translational temperature. This means
that a finite amount of time is needed even for a gas at rest to approach the state of
thermodynamic equilibrium.

The departure from equilibrium of a flowing gas depends upon the ratio of a
characteristic translational time needed by the macroscopic motion of the particles to
cover a typical distance, relative to the magnitude of the respective relaxation time.
The relaxation time is different for each mode of excitation. Hence, hypersonic flow
fields are, in general, in some non-equilibrium state. Only under particular circum-
stances may the flow approach one or the other limit, i.e., equilibrium flow or frozen

flow respectively. Theoretically, the frozen state can be defined as a state where the

axation time annraachec 7arn. Converse-

ratio of characteristic fransigiionai iiine 1o e icn poroaches
ly, in case of equilibrium flow, the ratio of characteristic translational time to relax-
ation time approaches infinity. Considering, for example, dissociation, this means
that in frozen flow the chemical composition along a streamline remains constant,
independent of the changes of other state variables. In contrast, in equilibrium flow,
the composition along a streamline will change if other state parameters change.

Since the characteristic transiational time is dependent on the body size, and
since relaxation times are dependent on the temperature, density, and to some extent
on local composition, it is obvious that non-equilibrium flow fields are generally not
similar for geometrically similar bodies even at completely equal free stream conditions;

alat
I

s is o ve ortant fact,
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2.2 Hypersonic Flow Fields, Flow Conditions, and Flight Regions During Re-Entry

By far not all phenomena in the complete range of hypersonic high temper-

- ature flow problems can be studied and calculated at the present time, because they
are too complicated. Therefore, we must concentrate our efforts on the study of those
combinations of variables which are today of the greatest engineering concern. This
leads us to the study of the hypersonic flow around bodies in the flight corridors,
usually plotted in an altitude vs velocity diagram because flight velocities are related
to flight altitudes. The relation depends on the aerodynamic configuration, such as
a ballistic capsule or a lifting vehicle, on the specific area loading of the vehicle and,
of course, on the initial velocity and path angle with which the re-entry begins. Such
re-entry flight corridors may also be presented in any state diagram of the gas. The
corridors are of great significance because they give in continuous sequence the range
of free stream conditions as they will be encountered during re-entry, as well as the
range of flow conaitions at the important points of the flow field, such as in the stag-
nation point region. More details can be found in Reference 1 through 3.

Figure 1 is a typical blunt body configuration used for ballistic vehicles. It
isa ‘s;herically capped cone which,in high speed flight, generates a detached bow
shock, The region between the shock wave and the outer edge of the boundary layer,
called the inviscid shock layer, has a subsonic region in the vicinity of the stagnation
point; farther downstream the flow is supersonic. Both regions of the inviscid shock
layer are separated from the body surface by the boundary layer. Altogether then,
there are three distinctly different flow regions, which in general must be analyzed
with equally different mathematical methods.

For axisymmetric flow at zero angle of attack, flow fields are symmetric with
respect to the body axis; and the inviscid portions can be calculated by presently
available methods even though they require considerable computational efforts. If the
flow with angle of attack is considered and axial symmetry does not exist, analytical

methods are not readily available.



The configuration of the Apollo vehicle developed for lunar return is shown
in Figure 2, taken from Ref. 4. The capsule is still an axisymmetric blunt body, but
typically it descends at some angle of attack (to a maximum of 33%) which is varied for
control purposes during re-entry flight. The flow field is completely unsymmetric, thus
adding a major complication to the problem. Besides the subsonic-supersonic inviscid
shock layer, there is the boundary layer, and behind the body,a viscous separated

- region. The latter two regions interact in the viscous mixing region which poses almost
unsummountable difficulties for a theoretical analysis. Unfortunately, because of the
location of antennas, this is also an important region as far as electromagnetic wave

propagation is concerned (see Reference 1).

Before an analysis of the boundary layer or the woke can be made, the invis-
cid flow field must be known. The initial effort must, therefore, be directed toward
the detemination of the inviscid flow field. Since air is o rather complicated mixture
of gases, especially when dissociation and ionization must be considered, a truly exact
representation is not possible at the present time. In order to properly select a model,
it is advantageous to first consider the conditions that are encountered along a typical

re-entry trajectory in the earth's atmosphere.

In Figure 3, the cross-hatched region in the velocity-altitude diagram indi-
cates the re-entry corridor of manned space capsules from circular orbit around Earth
with gbout 7.9 Km/sec and for lunar return with about 11.3 Km/sec. Also included
are equilibrium conditions behind a normal shock; thus the temperature, the pressure,
and the density as they occur in the stagnation point region of a blunt body re-entering
the earth's atmosphere can be read from the graph. Themodynamic data for the graph
were taken from References5 and 6.

It is interesting to observe that a major portion of the space vehicle trajectory
is approximately parallel to a line p, = const. The temperature lines at low velocities
are practically vertical, that is, the temperature depends only on the square of the
velocity. For higher velocities, the temperature depends on both velocity and altitude.

The lower density of high altitudes has the effect of increasing the degree of dissociation




which in turn causes a temperature decrease through the transformation of kinetic
energy fo energy of dissociation. Nevertheless, the stagnation temperature reaches
very large values (up to 11,0000 K) in the case of lunar return.

Figure 4,using themodynamic data from Reference 7, shows in a pressure-
enthalpy diagram for air, the temperature Tg and the compressibility factor Z, behind
a nomal shock for equilibrium conditions. Also included is the region of re-entering
space capsules as before. The square of vehicle velocity u]2, is responsible for the
main contribution to the total enthalpy. The free stream enthalpy, which depends on
the temperature and the density (i.e., on the altitude), is very small and therefore
neglected in our presentation.

The compressibility factor behind the nomal shock Z_ expresses the number
of all particles in a certain volume, which are partially or completely dissociated or
ionized, related to the number of particles in the nomal state before dissociation and
ionization (ZS =1). Assuming a simplified air model consists of 21% oxygen and 79%
nitrogen only, the curve for Z;= 1,21 indicates that nearly all oxygen molecules are
dissociated into atoms. Z =2 means nearly all oxygen and nitrogen molecules are
dissociated. Values of Z.>2 mean that ionization has taken place. In practice,
some ionization will start before dissociation of all nitrogen molecules is accomplished.
Also, the fomation of NO as well as the existence of other gases will lead to small

deviations from this interpretation.



3. THERMODYNAMIC RELATIONS INCLUDING REAL GAS EFFECTS

3.1 The Simplified Air Model

Before we are able to approach flow problems, dissociation of air at rest in
equilibrium must be studied. If all the components of the air and dll the possible reac-
tions are taken into consideration, the problem becomes very complicated and the
system of exact equations can only be solved by large electronic computers.

This task has been undertaken, for example, in Ref. 8 where 6 components of
the qir, 22 individual reactions, and 28 species have been considered. As a conse-
quence, a system of 56 simultaneous equations had to be solved. Twenty-eight of the
equations are linear, the rest are second order or higher.

We prefer to introduce a simplified air model which consists of oxygen and
nitrogen only. We will consider only the dissociation of diatomic oxygen and nitro-
gen to monatomic oxygen and nitrogen. Hence, reactions of oxygen with nitrogen after
dissociation are neglected; in particular, that means the formation of nitric oxide, NO,
is disregarded. This simplified air model enables us to understand the basic principles
with respect to oxygen and nitrogen dissociation, and to obtain equations which can be
easily handled and give us the oxygen and nitrogen dissociation with a very good approx-
imaiion to the so-called exact values of Ref. 8.

The chosen composition of our model air, sefore disscciction, is U.21 02 and
0.79 N, by volume. The oxygen content was very closely approximated, while the
remaining gases in atmospheric air, mainly argon and carbon dioxide, were added to the
nitrogen fraction. The resulting physical constanis as used iiv the subsequent calenla-

tions are summarized in Table 1,

3.2 Dissociation of Oxygen and Nitrogen in Equilibrium

3.2.1 Process of Dissociation and Recombination

With increasing temperature, we have to consider, in addition to the transla-
tional and the rotational motions of the particles, the vibrational motion of the atoms of
a diatomic molecule. If the raising of the temperature continues, the number and inten-

sity of collisions between the particles increases. In the process of dissociation, e.g.,



an.oxygen molecule must collide with some other particle having enough energy to

break up the oxygen molecule. The process of dissociation requires a considerable
amount of energy, the so-called dissociation energy. For the recombination of two
atoms, a triple collision is necessary, the third body carrying away the energy that

the two separate atoms must release to form a stable diatomic molecule.

3.2.2 Definition of Degrees of Dissociation a,

In general, at a given pressure and temperature, only a certain fraction of
the molecules are dissociated into atoms. The degree of dissociation can be defined in
various ways. We are using the following definition.

Let us denote

N = number of oxygen molecules per unit volume in the undissociated
mixture
602 = number of oxygen molecules per unit volume in the dissociated mixture

i~ = number of oxygen atoms per unit volume in dissociated mixture

(0]
(nN2, ﬁ'Nz-», ﬁN respectively for nitrogen)

Then we define the degree of oxygen dissociation a as the ratio of the number of
dissociated oxygen atoms per unit volume to the initial number of undissociated oxygen

atoms per unit volume which are, of course, in molecular state, i.e.,

a = 3.1)

This equation can be interpreted as the ratio of number of moles* or as the number of
particles per unit volume, or as the mass ratio.
We define the degree of nitrogen dissociation B in the same way:
n
N

B = TN (3.2)

The definitions of a and P are chosen such that a =1 or B =1 for complete dissociation

i.e., when all oxygen or nitrogen molecules, respectively, are split into atoms.
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The fractions of oxygen and nitrogen molecules in our air model before

dissociation are expressed and abbreviated as follows:

n
(22 =b = 0.2 (3.3)
"02 T "N2
n
':'2 = (1-b) = 0.79 (3.4)
02 ""N2

3.2.3- Law of Mass Action

We describe now the individual reaction, first in the generalized symbolic
form

v, Q. 2 v2Q2+v3Q3+ (3.5)

Here Qi stands for molecules or atoms of certain species. v, are the
stoichiometric coefficients (integers). in this reaction relation. On the left-hand side
appears the reactant Q] which is stable at low temperatures, and at the right-hand
side we find the products Q2 and Q3 of the reaction.

The application of thermodynamic principles leads to the so-called "law of

mass action” (see Seciiuns 1,15, 1,14 of Ref_ 9) and one obtains

= Kp (M) (3.6)

Here p; are the partial pressures of the molecules or atoms of the species Qi'

Kp 'is @ function of temperature only and is called the pressure equilibrium constant of
this pargééplar reaction. If this reaction is a dissociation, Kp is related to the
energy of dissociation, as seen in Eq. (3.10).

' ‘(I,nﬁ_p;der to be more specific, let us consider the example of the oxygen disso-

ciation: '




10

0, 20 (3.7)
For this reaction, we have v = 1, vy = 2, and Vg = 0. The energy of dissociation
D'is defined by (Ref. 9):
.
D = ( g_q) (3.8)
Q, p;T

where q is the heat addition and a the degree of dissociation. It follows from this

law that the right-hand side of Eq. (3.8) is dh/3a. Thus we obtain
D=h,-h (3.9

+, . . . . e
D'is the energy necessary to dissociate completely a unit mass of one species in the
moleculor state, at constant pressure and temperature. Here h] is the enthalpy of the

gos in the atomic state and h2 the enthalpy in the molecular state.

3.2.4 The Pressure Equilibrium Constants Koo and Kpﬁ

The following differential equation for the pressure equilibrium constant K
i
can be obtained

din Kp B D+
i = > (3.10)
R2T

R2 is the gas constant per unii mass uf the mclccular species. The discaciation eneray
Dtis, in general, a function of T. However, often this variation is rather small, for
instance, in the case of oxygen dissociation between 3000 °K and 5000°K. If Dtis

assumed constant, Equation (3.10) can be integrofed+ond furnishes

-2
R2T
Kp = const. e 3.11)
4,
The stanf'f&?‘oxygen,,cclculc’red from data given in Ref. 10, is

4
10 atm. In Eq. (3.11) the following combination of parameters occurs
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+
ED- = D' (3.12)

N

which has the dimension of a temperature and is called the characteristic temperature

for dissociation, Its values are

Dl
DI

59,000 °K for oxygen
113,000 °K for nitrogen.

Equilibrium constants for oxygen Kpa and for nitrogen KpB are shown in Figure 5
as functions of temperature in the range from 2,000 to 10,0C00°K. These are based on
values given in Ref. 11 up to 6,000°K; above this temperature they are taken from

Ref. 12,

3.2.5 Degree of Oxygen and Nitrogen Dissociation as Function of Pressure and
Temperature

We start with the reaction equation for our simplified air model, but include

dissociation of both oxygen and nitrogen.

20, + N 2 nnO.+n .N,+n O +n N (3.13)

"o N2 2 02°2""N22 " "0 N

As mentioned before, n, and ﬁi are the number of moles of the particular species,
which are also proportional to the number of particles in a certain volume. We will

write the conservation of mass for oxygen and nitrogen and observe that one mole of

diatomic oxygen or nitrogen gives two moles of mon-atomic oxygen or nitrogen.

2n02 = Lno2 'i‘no | (3.14)

2nN2 = 2nN2 g (3.15)

Now we consider the individual reactions and obtain, according to the law of mass

action Eq. (3.6), the following equations with the equilibrium constants Kpa and

K
PB
2 _ 2
Po "o p
n. IR

K =— = (3.16)
Pa Po2 "0o2

Fe
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K, ,=——=— £ (3.17)

Here p; is the partial pressure of the component in the dissociated mixture, while p is
the total pressure of the mixture, measured in atmospheres. If is the total number of
moles in the dissociated state, the right hand side of Eq. (3.13). This is a consequence
of the fact that the sum of the partial pressures must be equal to the total pressure.
This system of four equations (3.14), (3.15), (3.16), and (3.17) contains four

unknowns (n ) if pressure p, temperature T (and therefore Kp),

02’ N2t o N

and the original molar composition n are given. It can be reduced to two

02’ "N2

coupled quadratic equations for a and B which must be solved simultaneously by

trial and error. An explicit solution with two separate quadratic equations for a and
B are obtained if we make use of the physical fact as mentioned before, that oxygen
is almost completely dissociated before dissociation of nitrogen begins. Then we have

for that temperature range where only oxygen dissociation occurs HN = 0 and

INTIRILNTY and therefore

+n_+n ' (3.18)

- 4b o? 4o’ ;
- (3.19)

b (1-a)(1+ba) 4.762 - 3.762a - o

If temperature and pressure are given, the left-hand side is known with the aid of Fig. 5,
and a can be calculated. This formula is valid for 0 <a< 1.

For higher temperatures, both oxygen and nitrogen will dissociate. However,
the solution will be simplified again due to the same physical facts mentioned above.
With increasing temperature (at fixed pressure), we reach the point;where oxygen is

issoci i ts to dissociate n ., = N~ = 2n
almost completely dissociated, when nitrogen starts to dissociate N9 0 and iy 2no2.
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Under this assumption, and with eq. (3.14), we obtain for the temperature range,

where nitrogen dissociation is present:

In= ZnO2 02 g (3.20)
In order to evaluate eq. (3.17) for KpB , we introduce eq. (3.20) and the definition
of the degree of nitrogen dissociation (3.2). We are eliminating N2 by eq. (3.15)
and we are introducing the numerical value for the ratio nNZ/nO2 from egs. (3.3)

and (3.4). This finally results in the equation for nitrogen dissociation

Kog 4p? 4p?

P (—]—2:% (1-) + (1-B%)  1.5316 - 0.5316p - B° (3.21)

The degree of oxygen dissociation a and nitrogen dissociation B are calculated for the
simplified air model using egs.(3.19) and (3.21) as function of temperature and

pressure and presented in Fig. 6. It can be seen that the dissociation for both species
increases for a certain pressure with increasing temperature, and for a certain tempera-
ture with decreasing pressure. Note that at 5000 °K and at the pressure of 1 atmosphere,
the oxygen dissociation is al mast complete(a close to 1.0) while the nitrogen dissocia-
tion for the same pressure just starts(B approximately 0.01). This illustrates the fact

that oxygen and nitrogen dissociation are practically uncoupled. This is a result of

the markedly different values Kpa and KPB at a given temperature. Fig. 5 shows

that between 4000° and 6000° K, Kpa is a factor of 10% to 10% larger than KPB .

3.3 Thermal Equation of State for Oxygen Dissociation Only

3.3.1 Simplified Air Model with Restriction to Oxygen Dissociation

The task of the calculation of hypersonic flow through nozzles or around blunt
and pointed bodies, as presented in Sections 4, 5, and 6, is so substantial that we will
further simplify our air model. We will introduce an additional restriction, namely to
oxygen dissociation only. In other words, the range of application expressed in the
appropriate ranges of temperature and pressure is such that only oxygen may dissociate.
Even with these simplifications and restrictions, the resulting thermodynamic equations

are still complex. This air model permits us to gain insight into the distinct features




of non-equilibrium flow phenomena with a minimum of computational effort, which, as

it will be seen, is still large.

3.3.2 Derivation of Thermal Equation of State

We will denote the number of particles of the ith species per unit volume of
the undissociated mixture with n, and that of the dissociated mixture with ﬁi’ and the
mass of one particle of the ith species with m..

The density of the mixture becomes
p=1Imn, (3.22)

Assuming that the individual species obey the perfect gas law, a very important assump-
tion, the total pressure of the mixture is the sum of its partial pressures, or
p=Ip, =IpRT (3.23)
i i
The specific gas constant of each species is given by

kN
YAk
R, "W (3.24a)

i

i
Combining the three last equations, we obtain the pressure, and dividing it by equation
(3.22), we obtain the equation of state as

Ln,
= kT

L m.n,
i

(3.24b)

©I|T

We have in the mixture at any state, ﬁo particles of atomic oxygen, (1- 0)n02
particles of molecular oxygen and N particles of molecular nitrogen. We must also
observe that the mass m ., = 2mO and m_, = ZmN. Inserting those values in

02 N2
eq. (3.24b) and also using eq. (3.1) and equation (3.3), one obtains:

%= (1 +ba)RT = ZRT (3.25)
where Z = (] +ba) (3.26)
and numerically b =0.21 (3.3)
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Here R is the gas constant of the undissociated gas. Z is called the compressibility
factor (see Section 2.2 and Fig. 4). A more detailed derivation of the thermodynamic

equations of this and the following thermodynamic sections can be found in Ref. 13.

3.4 Equations for Internal Energy and Enthalpy for Oxygen Dissociation Only

3.4.1 Energy States of a Gas Particle; and Partition Functions

The thermodynamic properties of a gas may be derived from its partition
function. Details concerning the partition function may be found in texts on statis-
tical thermodynamics (Ref. 14, 15, 16). We will only summarize those relations that
are needed for our calculations. The partition function is closely related to the
energy of the particle. In our case, the energy may be due to the translational,
rotational, or vibrational motion of the particle, and at higher temperatures due to
the motion of the electrons within the particle. Assuming that no coupling exists
between the different modes of excitation, the partition function may be written as

the product
Q=Q Q QQ (3.27)
t r v e

The factors on the right hand side are the partition functions associated with the
translational, rotational, vibrational, and electronic energy levels of the particle.

For diatomic molecules these factors are:

3
Q = 2rmkTZ kT (2.98)
f h2 p ’
Q = g kT _ T .29
r » h2 ner )
i
Q =(-e T (3.30)
€.
S |
Q = I ge¢ kT (3.31)
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For monatomic particles, such as oxygen or nitrogen atoms, which have no mode of
rotational or vibrational excitation, the respective partition functions take the value
unity. The contribution of those modes to the internal energy then becomes zero.
Table 2 presents atomic and molecular constants which were used in our calculations.
Note that in eq. (3.3l), € is the energy of the ith state of a gas particle, and
g, is the degeneracy, that is the number of states of a particle which has this same
energy level .

In the following section we shall need Qc and Qp , the partition functions
for the standard state of unit conceniration and of unit pressure, respectively. They are
functions of temperature only, and in terms of the total partition function, they are

given by

Q = f‘r Q (3.32)

Cc

Q =pQ (3.33)

3.4.2 Internal Energy Equation

According to statistical thermodynamics, the internal energy per kilomole of

a pure gas is given by

%2 dIn Q¢
e—RT—aT—— (3.34)

Since the total partition function is a product of the individual partition functions and
equation (3.34) has a logarithmic character, one sees inaut the contribution of the

various energy modes to the internal energy are additive. We insert in eq. (3.34)

the partition function (3.32) and (3.27) with its components (3.28) through (3. 30).

At the same time, in the range of temperature which we have under consideration, we can
neglect the electronic excitation (3.31). (We also observe that atomic oxygen consists

of monatomic particles, while oxygen molecules and nitrogen molecules are diatomic

particles)) As a result, we obtain

* (3.35)

®
i

Nl W
~
-




0 . R*
_5 .. 02

e -1

6, .,R*
_5., N2

e -1

It is obvious that in the above expressions it is assumed that the vibrational temperature

and rotational temperature are always in equilibrium with the translational temperature.
The internal energy of the gas mixture, E, is the weighted sum of the internal

energies of each species due to the various modes of excitation (translation, rotation,

vibration) and of the dissociation energy of the dissociating component,

D (3.38)

This is called the internal energy equation for the mixture. f; denotes the mole fractions

for the dissociated mixture which are obtained as

_ a
fo=2% (3.39)
f . =hl-d (3.40)
Q2 7 :
f=(1-b)o (3.41)
N2 7 -

Equation (3.39) has the factor 2 because each oxygen molecule which dissociates will
produce two atoms of oxygen. If we have one mole of gas before dissociation, then we
will have Z moles ofter dissociation. Hence, the factor Z occurs in the denominator
of all mole fractions, in order to refer the number of particles to one mole. We do not
present here the complete equation for the internal energy in detail because it is much

more practical to use the equation for the enthalpy given in the next section.



18

3.4.3 Enthalpy Equation

The enthalpy of the gas mixture is defined in the same way as is the enthalpy

of a gas with only one component.

h=g+B (3. 42q)

E is calculated according to eq. (3.38) with the mole fractions according to (3.39),
(3.40), (3.41) and the energy of the particles of the components according to (3.35),
(3.36), and (3.37). We have to observe tha'\tA

M = 5 (3.42b)

a

which relates the molecular weight of the dissociated mixture M, fo that of the
undissociated air M. The second term in eq. (3.42) is substituted from eq. (3.25).
Note that we switch from the universal gas constant R*, with units (J/kmol °K)

to the gas constant of the undissociated gas, R, with unit (J/kg ®°K). The enthalpy
equation (per kilogram) is finally obtained as

3 7
h =R botD02 fbaT+§-T+(]-a)b

° ).“ ) o ‘N2 ] (3.43)
02/T ;i

@ is the characteristic temperature of vibration, and D' the characteristic tempera-

ture of dissociation. This enthalpy is then given in joules per kilogram.

3.5 Dissociation and Recombination Rate Equations tor Oxygen Dissociaticn

3.5.1 Departure from Equilibrium

In general, a large number of collisions among the particles is required to bring
the molecular vibrations, dissociation, and higher degrees of excitation in equilibrium
with the focal translational temperature. This means that a finite amount of time is
needed for the gas properties toapproach thermodynamic equilibrium. The departure from
equilibrium of a flowing gas is characterized by the magnitude of this relaxation time
relative to some translational time needed by the particles to move over a characteristic
distance on a body or within a nozzle. Since only oxygen dissociation is considered,

only one chemical rate cqueation is needed. Vibrational relaxation should be also
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included when higher accuracy is required. In view of the complexity that would be
; introduced if the coupling between vibration and dissociation were treated, it is felt

that it is justified to assume the vibrations to be in equilibrium.

3.5.2 Dissociation and Recombination Rate Eguation

The number of oxygen atoms, in either molecular or atomic form, per unit

mass of the gas can be written as

NA
C=2 5 (3.44)

w The number of free oxygen atoms per unit volume of the gas is then
n o = Cap (3.45)

We are now interested in the number of oxygen atoms generated per unit volume and
! unit time, denoted by w. From eq. (3.45) together with the over all continuity
equation, one can obtain the following relation between the net production of oxygen

atoms generated and the gradient of the degree of oxygen dissociation, @ as
w = Cp(-c;-grad a) (3.46)

The net rate of oxygen atoms generated by unit volume of the gas is

dn dn
) _ o) (@]
] w = dt )diss * dt )rec (3.47)

The first term is positive because dissociation increases the number ot tree
atoms; the second term is negative because recombination decreases the number of free
oxygen atoms. The process of dissociation or recombination which may occur in our

present air model can be described by

O)+M = O+O0+M (3.48)

In the process of dissociation, the oxygen molecule must collide with another particle
M; of the ith species, either an oxygen atom or molecule or a nitrogen molecule in our

air model. k, is the dissociation rate constant which depends strongly on the type
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of the colliding body M;. The recombination process is the inverse of the dissociation.
In order to occur, it is necessary that two oxygen atoms collide at the same time with

a third body M;, which is able to carry away the energy in such a way that two atoms
can form a stable diatomic oxygen molecule. It is obvious that also the recombimation
rate constant will depend on the type of the colliding body M; . Obviously, recombi-
nation requires a three-body collision and hence it is much more rare than the collision
which produces dissociation. The number of particles per unit volume that may act as
colliding bodies will be for our air model

nM=nO+no2+ nN2 (3-49)

Adding the species together, we obtain after some calculation

= _ CpZ

M 6 (3.50)

From the law of mass action, discussed in Section 3.2.3, it follows that the rate of
change of concentration is proportional to the product of the concentrations, raised to
the power of the stoichiometric coefficients. The application to our specific process
of dissociation expressed in eq. (3.48) gives the rate of production of oxygen atoms

d
o s =

( = k,n n

T )diss d"02 "M

(3.51)

The rate of the disappearance of oxygen atoms due to recombination is given in a
similar way by
( ono) o

atrec -kr "0™™ (3.52)

Note that the dissociation rate depends on the first power while the recombination
rate depends on the third power of the free oxygen atoms, a consequence

of the two and three body collisions. k4 and k_ are the temperature dependent
reaction rate "constants” for dissociation and recombination respectively. They will

be discussed in more detail in Section 3.5.4,
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3.5.3 Net Production and Source Function

In order to obtain the net rate of oxygen atoms generated, we substitute (3.51)

and (3.52) into (3.47) and obtain
v ek -k

o2"M ~ 5"0"m (3.53)

For local thermodynamic equilibrium, the net rate of oxygen atoms generated vanishes,

i.e., w = 0. Hence,

kg ﬁ2o
= = K_ (3.54)
r 02

where K_ is the concentration equilibrium constant for the considered reaction. Now
we make the important assumption that the above relation, derived for equilibrium, is
also valid when the flow is not in chemical equilibrium. Then we substitute equations
(3.45) and (3.49) into equation (3.53) and also use equation (3.54) to eliminate k,
because the recombination rate constant is generally not too well known, while kg and

Kc are much better known. This furnishes

(3.595)

3
= Ce Zhy [(1-a) _ o’
v 2b | 2Cp K,

Substituting this oxygen atom generation rate into equation (3.46), the desired rate

equation finally is

q-grada=F (3.56)
where
2 2
F=CPde [ma) o2 0.5
2b 2Cp Ke ’

It is important to see that the dissociation process is proportional to the density and the
available oxygen molecules, while the recombination process is proportional to the

square of the density and the square of the number of oxygen atoms already dissociated.
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The processes of dissociation and recombination occur at finite rates. The
rate "constants" for both processes were defined in equations (3.51) and (3.52).
In order to evaluate the rate equation (3.57) we still need an expression for the
dissociation rate constant. Ordinary kinetic theory is not completely adequate to
predict these rate constants. In practice, the rate constants are usually given in a

form similar to the one which was first suggested by Arrhenius and based largely on

experimental data, namely,
P Y - Ed /R*T .

kd=Se (3.57 a)

where for dissociation, E, is the activation energy for dissociation and S the

d

corresponding frequency factor.

A comprehensive review of recent work carried out in the field was given by
Wray (Ref. 17). His values will be used in the present investigation* Due to the
simplification introduced, eq. (3.51) and (3.52) were written with a single rate
constant eoch for dissociation and recombination. In order to account for the influence
of the catalytic species, we will use a dissociation rate constant, which is averaged with

respect to population, of the form

kd = ? fikd,i (3.58)

where the f; are the mole fractions and where the kq ; denote the dissociation rate
7
constants (for axygen) with the ith species acting as catal yst.
Using now ihe mole fracticns 2 given in eq. (3.39) and (3.41) and Wray's

values, the oxygen dissociation rate constant is

2.5-10° p .19 'RR*“T 41ba + 7b + 2
_ . a
TN, ) (=5 ) (3.59)

with the dimension (m3/portic|e sec). It is seen that the dissociation rate "constant"
is actually a function of temperature T, and composition a . Fig. 7 shows the range
of this equation for a between 0 and 1, together with the values of other authors for
various colliding bodies.

|
3.5.4 Reaction Rate Constants _
|
|
|
\
|
|

*See footnote on page 24
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3.6 Equilibrium Constants for Oxygen Dissociation Calculated From Statistical
Thermodynamics

3.6.1 Concentration Equilibrium Constant Kc

In order to evaluate the rate equation and to calculate the equilibrium compo-
sition for our air model, the equilibrium constant as function of the temperature is
needed. The concentration equilibrium constant has been expressed previously accord-

ing to eq. (3.54).

k 52
K = Ei = ___9_ (3.54)
C r n02

3.6.2  Pressure Equilibrium Constant Kp

The pressure equilibrium constant Kp is defined in terms of the partial
pressure as derived before (see eq. (3.16) and (3.17)). It depends on the partition
functions and the energy of the products and the reactants. For the oxygen dissocia-

tion reaction the equilibrium constant becomes

2 D'
Qp (O) T

K = e 3.60
P~ Q0 (3.60)
Because the equilibrium constant contains the ratio of the partition functions, we cannot

neglect the electronic contribution as we did in calculating the internal energy. How-

O

ever, only those energy levels which give an appreciable contribution within the tempe-
rature range in which our air model is valid were considered. Equations (3.27) through

(3.31), and (3. 33) are substituted into (3.60). Using the numerical values one obtains

2270 -228/1 —326/T]2 _ 59366
K =ATY2 [l T |Bt3e e aa T (3.61)
S 3+ 2e
5 2
where Ap = 2.444056 - 10° for KP N/ m

2.412096 for Kp atm
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Explicit expressions for the constant Ap are given both in Newton's per square meter,
as well as in atmospheres. The concentration equilibrium constant, described before,

is related to the pressure equilibrium constant by

K
K, = E$ (3.62)

and has the dimension (particles/m3) if Kp is used in (N/m2 ).

3.6.3 Equilibrium Flow Relation

For equilibrium flow a relation between the equilibrium constant and the
degree of dissociation is very useful and necessary in order to carry out such calcula-
tions. This can be obtained by considering the fact that for local equilibrium, the net
rate of production of oxygen atoms w must vanish. If we set eq. (3.55) to zero we

obtain

Kc (1-a)
2Cp
Using eq. (3.25) to substitute p and (3.44) to substitute C, ond using eq. (3.62)

_ =0 (3.63)

to change from the concentration to the pressure equilibrium constant, one obtains

Kp (M ) 402

P (b +a) (1-a)

(3.64)

' The above equation is identical with equation (3.19) obtained earlier by different
means. The equation relates the composition for any state of thermodynamic equilibrium
within the range of oxygen dissociation to the pressure and the pressure equilibrium
constant, which is a function of temperature only according to (3.61). It has to be

used for any flow calculations which assume equilibrium conditions.

Footnote from page 22:

In Reference 17 and others, as well as in this paper, the activation energy for dissociation,
E,, is assumed equa! to the energy of dissociation D. This follows from the observation
that the activation energy for recombination of 2 atoms is neariy zero {(Ref. 40).
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4, NON-EQUILIBRIUM FLOW WITH OXYGEN DISSOCIATION THROUGH A
HYPERSONIC NOZZLE
4.1 Assumptions and Basic Equations

The flow through a hypersonic Laval nozzle of small or moderate cone angle
is almost one-dimensional. Hence, it is much easier to understand than the hyper-
sonic flow around bodies, and is also much easier to treat mathematically, because
the flow is described by ordinary instead of partial differential equations. Hence,
flow through a nozzle is well suited to demonstrate equilibrium, non-equilibrium,
ond frozen flow. In fact, for the practical cases calculated below, all three regimes
occur in the same nozzle in sequence due to the expansion from high to low temper-
atures and densities.

We will first consider the flow through a hypersonic nozzle up to @ Mach
number of about 15 for various supply conditions, nozzle geometries, and sizes.

The flow through a hypersonic nozzle has been calculated under the assumption of
one-dimensional flow with the basic thermodynamic relations specified in Section 3
for the real gas effects and particularly for the simplified air model. In addition,
viscosity, diffusion, and heat conductivity of the air are neglected. Five equations
have been established. The continuity equation and the momentum equation in the x
direction are of the conventional form and, hence, are omitted here. |In addition,
there are: the equations of energy containing the enthalpy, the equation of state, and
the rate equation, all of which are derived in Section 3 (Eqs. 3.38, 3.25,3.59). The
5 unknowns are velocity u, pressure p, temperature T, densiiy p, and degree of dissoci-
ation a. |In addition, the energy equation (3.38) contains the enthalpy h, which is
expressed by T and a through equation (3.43 ). It was possible to eliminate pressure
p and velocity u from the 5 equations and, hence, 3 ordinary differential equations

remain to be solved (Eqs. 4.1, 4.2, 4.4).

(Hb")ic (17e)- mj (4.1)

m A*
A*A

Q
Q

o
x
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2 .
Av3lbda  1dT A*d A
dp _ R GPe [7.3_;+TK'A_<T¢((F)]_ A d A
dx (n'l/A*)z(]-K) A dx A* (4.2)
2
RZT p2 (&) n
K = ___2_”‘—; bz -2 (4.3)
th P02 " "N2
[~
h  RTb7da A* d (A
ﬂ=(]-K)[g_a-—]-K =R & KR b
dx oh :
RZ‘a—T (]'K)

This system shows the derivatives for a, p, and T with respectto x. It
is noted that the derivative of o depends only on the state of the gas and the area.
The derivative of the density contains, besides the state of gas, the derivatives of a,
T, and the area change. The derivaﬁ\)e of the temperature contains also the deriva-
tives of a and the area change but, in particular, two partial derivatives of the
enthalpy with respect to a and T.

4,2 Flow Calculations

It can be proven exactly with the methods of irreversible thermodynamics, that
equilibrium flow with changing degree of dissociation, if adiabatic, is also reversible
and isentropic. The same is valid for adiabatic frozen flow with constant chemical
composition. However, the generai case of adiubatic nen-equilihrium flow is not
isentropic.

Calculations have been carried out for the flow assumed to be in equi-
librium as well as for the general case of non-equilibrium flow, in order to
compare the results of the two concepts. In the subsonic portion of the nozzle, because
of the low velocity, the flow is assumed to be in equilibrium up to the throat, but this
assumption should be checked for any particular case. The subsonic expansion is then
isentropic; consequently, the temperature, compressibility factor, and the enthalpy can
be determined from a Mollier chart for arbitrary values of the pressure, following a line of

const. entropy. The corresponding density and velocity can then be calculated. The throat
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conditions can be found by calculating the mass flux as function of x which must be a
maximum at the throat.

In the supersonic portion of the nozzle and for the equilibrium flow calculation,
the same procedure has been followed. Such results have been presented by several
avthors. The essential contribution of our former investigation (Ref. 3) is the calculation
of the non-equilibrium flow. The throat conditions determined from the equilibrium
flow calculation represent the initial values for the non-equilibrium flow in the super-
sonic portion of the nozzle. In addition, in order to start the numerical integration, the
derivatives at the throat had to be specified and they were taken to be those of the
equilibrium flow.

In non-equilibrium flow the solution depends on the shape of the nozzle and
on its absolute dimensions. Because many hypersonic nozzles are axisymmetric and have
an approximately conical shape, the following geometry has been selected:

% =1 + (;)-(-)2

with the parameter

_ d
f = 2 tan x

where d is the diameter of the throat and x is the asymptotic angle of the nozzle.

The numerical calculations have been carried vui for varicue values of the
parameter f ranging from about 0.9 to 2.0 cm. This covers a family of nozzles with
cone angles ranging from 5° to 300, with throat diameters ranging from 0.15 to 2.0 cm,
with total nozzle lengths between 90 and 200 cm and with a maximum area ratio of
10, 000,

As the shape of the nozzle is a specified function of x, the above system of

differential equations could be simultaneously solved on a high speed computer, the

IBM 7090, using the so-called third order Runge-Kutta integration method.
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4.3 Numerical Results of Hypersonic Nozzle Flow

The degree of oxygen dissociation o along the hypersonic nozzle is shown in
Figure 8 for some characteristic supply pressures and temperatures. Both equilibrium and
non-equilibrium flow calculations are shown in the same diagram. For equilibrium flow,
the degree of dissociation decreases rapidly due to the strongly decreasing temperature
and density. In contrast, non-equilibrium flow shows only small effect of recombination
and then freezing of the degree of dissociation a shortly downstream of the throat, at
an area ratio of 2 to 5. From there downstream, the degree of the dissociation stays
very nearly constant, or stated differently, the chemical composition is practically
frozen. At a fixed supply pressure, the degree of dissociation at which the flow freezes
increases with increasing supply temperature. At a fixed supply temperature, the frozen
dissociation decreases with increasing supply pressure.

The freezing of the chemical composition just downstream of the throat was
already observed by Bray (Ref. 18) for Lighthill's "ideally dissociated gas". This can be
explained by the fact that dissociation and recombination processes, which are balanced
in the reservoir due to equilibrium conditions, decrease at different rates as the air
expands. In particular, the rate of dissociation tends to zero first, decreasing strongly
with temperature and thereby leaving first the recombination rate as the net reaction,
and o decreases. Later, also the recombination rate tends to zero because it is pro-
portional to the square of the density. Hence, du/dx wgidly annroaches zero in the
divergent portion of the nozzle, meaning @ becomes constant.

The temperature distribution along the hypersonic nozzle is shown in Figure 9
for both equilibrium and non-equilibrium flow for a supply pressure of 50 atm and for
various supply temperatures. The temperatures calculated for non-equilibrium flow are
much different than those calculated from an assumption of equilibrium. The ratio
of equilibrium to non-equilibrium temperature can reach a factor 4 in certain
cases. The reason for it is the fact that the energy of dissociation, which is contained
in the gas near the throat, is released step by step in equilibrium flow. In contrast, at
non-equilibrium flow this energy stays practically frozen in the gas and does not con-

tribute to the temperature. Because nc energy is released in the non-equilibrium flow,
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this corresponds very closely to an adiabatic expansion of a perfect gas, of course with
a different y than for air at standard condition. The temperature distribution for a
perfect gas with Y = 1.4 has been included for comparison.

The Mach number distribution along the hypersonic nozzle is shown in Figure 10
both for equilibrium and non-equilibrium flow for a supply pressure of 10 atm.
Because sound velocity is closely related to temperature, the Mach number distributions
show similar strong discrepancies between equilibrium and non-equilibrium flow. The
ratio of the Mach numbers between the two cases can reach a factor 1.8. it is noted
that the Mach number for a perfect gas with ¥ = 1.4 is close to the lines of non-equili-
brium Mach numbers. 1t should be observed that the liberation of the dissociation energy
by the recombination process in equilibrium flow defeats markedly the purpose of a
hypersonic nozzle, namely to produce high Mach numbers by a certain expansion ratio.
For non-equilibrium flow fortunately, this undesired effect has been strongly reduced or
cancelled. For most experiments, both a high Mach number and an undissociated free
stream are desired, whereas non-equilibrium flow results in a dissociated free stream.

Pressure and density distributions have also been calculated for the same
combinations of supply pressure and temperature. They are not presented here. Pressure
is affected similarly, but somewhat less than temperature. The ratio between equili-
brium and non -equilibrium flow can reach factor 3. The density is very little affected,
only up to 15%. Investigation of the effect of the length parameter §, wihich was
varied a factor 2.3, on the flow parameters reveals practically no influence of the
nozzle, if the flow parameters are compared at a specified area ratio A/A*, Only a
very small decrease in the degree of dissociation (of about 1%) can be observed
comparing the shortest and the longest nozzle, that is the longer nozzle only slightly

assists in the recombination process.
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- 5. NON-EQUILIBRIUM FLOW AROUND BLUNT BODIES WITHOUT AND WITH
DISSOCIATION IN THE FREE STREAM

5.1 Direct and Inverse Methods for Flow Calculation

The importance of blunted shapes in the hypersonic flight of a vehicle re-enter-
ing the atmosphere from outer space has led to many investigations of hypersonic flows
with detached shock waves, using both inverse and direct methods. In the inverse method
a certain shock shape is assumed or prescribed, and then the governing equations are inte-
grated through the flow field, and the associated body shape follows from the calculation.
This method hos the advantage that the problems associated with the specification of
boundary conditions along an unknown shock wave are avoided. Although it has been
successfully applied, for example, by Hall (Ref. 19) even for real gas, the method is
extremely tedious if the flow field around a desired body shape has to be determined. In
contrast, the investigators at the University of Alabama Research Institute in Huntsville
have used a direct method, where the body shape is given and the flow field, including
the shock shape, is a result of the calculation. This method uses "integral relations".

In 1959 Dorodnitsyn (Ref. 20) had described this method of integral relations
for the solution of two~dimensional boundary value problems. This method is also appli-
cable to problems with free boundaries, such as the shock wave, and has first been
applied by Belotserkovskii (Ref. 21) to the calculation of supersonic flow of a perfect gas
nast a circular cylinder. Also, using a perfect gas, the basic work has been extended by
various other authors (Ref. 22, 23, 24) for other body shupcs.

Up to the present time, only a limited number of investigators have obtained
results for real gas flows in connection with the integral method. The first results were
presented by Shih, Baron, e.a. (Ref. 25), for hypersonic non-equil ibrium flow of air
past a sphere. Simultaneously, Yalamanchili and Hermann (Ref. 3, 26) investigated non-
equilibrium flow of air past a circular cylinder for one particular case. Later Belotser-
kovskii (Ref. 27) used the integral method to caicuiate equilibrium flow of air past
spheres and ellipsoids.

Very recently Hermann and Thoenes (Ref. 28) have given new, extended and
improved results for non-equilibrium hypersonic flow of air past a circular cylinder.

They have also treated, for the firsi time to the author's knowledge, the case of dissocia-
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tion in the free stream. Such conditions are encountered either in the atmosphere at
high altitude (above 90 km), or in the nozzle of modern heated high speed flow facilities
designed to simulate re-entry flight conditions, where appreciable frozen dissociation

may occur (Section 4,3).

5.2 The Integral Method of Dorodnitsyn and Its Application to the Inviscid Flow
Around a Circular Cylinder

5.2.1 Basic Equations

We are restricting ourselves to inviscid flow, and hence we are neglecting
viscosity, heat conduction and also radiation. We are using the basic equation of
motion for steady adicbatic flow. A polar coordinate system, referred to the center
line of the cylinder, is the most suitable one. Figure |l shows the cylinder with the
radius e the shock wave produced by the flow, the local shock wave angle o, the
local shock wave detachment distance A, and the various velocity components before
and behind the shock. The transformation of the four conservation equations from the
vectorial form to polar coordinates is standard. The results are four partial differential

equations:

Conservation of mass:

d 0 -
36 (PU)* 57 (evr) = 0 (5.1)
8-momentum:
ou du 1 QE =
ua—e+vra-7+uv+aa 0 (5.2)
r-momentum:
O S A Y S (5.3)
a0 or *
Rate equation:
da da - .
vsg tVrEr ~ Fr =0 (5.4)

The last equation expressing the conservation of oxygen atoms, had to be added since the

in Section 3.
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22
_Crzky .[I-a 2] (5.5)

F=— B

a_
2Cp Kc

In order to solve these equations for the unknowns, they must be supplemented by the

equation for the conservation of energy, containing an expression for the enthalpy
derived in Section 3 (Equ. 3.43).
be ]

_ v .3 7 ) 02 } N2
h =R |baDy, + 5 baT + 5T + (I a)G—O?-T-—+(1 b)v(s.é)
e -1 e -1

and by the thermal equation of state given before (Section 3). Note that the first three
equations (conservation of mass and of the two momenta) are independent of the parti-
cular gas model, while the last three equations (rate, energy, equation of state) do
depend strongly on the particular gas model. The conservation of mass and the r-momen-
tum equation are given in the so-called divergence form, which is required for the

application of the integral method.

5.2.2 Boundary Conditions

The condition for flow tangency on the body surface is

=0 - (5.7)

The cuinditions behind the shock are obtained from the conservation of mass, momentum
and energy across the shock in the conventionai way. The parameters across the shock
depend considerably on the free stream conditions such as velocity, composition, (for
instance, whether free stream dissociation is present or not), and the temperature. In
addition, they depend on the way the transition takes place through the shock, i.e.,
whether the gas is assumed to be in equilibrium or in the frozen state immediately down-
stream of the shock. For the present non-equilibrium flow calculation, it will be
assumed that the chemical composition of the air does not change across the shock, i.e.,
ay = a. It may be noted that numerical results of the above shock calculation are
given for a wide range of free stream conditions in Ref. 29,

Various relations between the velocity components before and after the shock

which will be needed later are obtained frocm Figure 11. The same figure also indicates
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that the relation between local dimensionless shock wave distance from the body e

and the shock wave angle o is given by

%5 =~ (1 + ¢) cot(o + 9) (5.8)

where o and ¢ are functions of 9.

5.2,3  Application of the One-Strip Integral Method

The method of integral relations, proposed by A, A. Dorodnitsyn (Ref. 20), and
first applied by Belotserkovskii (Ref. 21), is already well known. lts application to the
calculations of hypersonic flow past blunt bodies was also described in Ref. 3 and will
not be repeated here. In contrast to the presentation given in Ref. 3, a slight modifica-~
tion of the method, previously used in Ref. 25 and 13, has been applied. It consists of
a reduction of the number of equations for which the linear variation, typical for the one~

strip integral method, must be assumed.

Due to the boundary conditions (eq. 5.7), it can be seen that the 8-momentum
equation and the rate equation may be used in their exact forms. Hence, only two
equations of the set, namely the conservation of mass and the r-momentum equation, are
approximated by assuming a linear variation of certain integrands across the shock layer.
Thus an integration of the equations in the direction of the radial coordinate can be per-
formed, which iﬁ turn resuiis in twe ordinary differential equations with the tangential
coordinate as independent variable. Making use of the boundary condition (eq. 5.7},

the complete set of governing equations are as foliows:

Continuity:
dub dpl:> dus dpS )
Pbde "V de T PsdE TV T
e [(ey vy, =Py v cot 0+ 0) - 2p v, ] (5.9)
6-momentum:
dub dpb B

0N

Pb' 98 T dg ° (5.10)
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r-momentum:
3 (PgugVe) L 222 (B - Py * Y, + P (5.11)
2
l 4+ €
- —t [ps’usvs cot (0 + 0) + ZPSVS]
Rate:
d
u, @ = Fbrb (5.12)
Energy:
ay u§ u2
1
5 + hb = ht =5 + h1= constant (5.13)
Equation of State:
Py = PpR%T, (5.14)

These constitute, together with the geometric relation (5.8), a system of seven
equations for the seven unknowns. There are four ordinary differential equations and
three algebraic equations. The seven unknowns are the five parameters along the wall
of the cylinder Upr Pyr Ppr Tb' ap and the two parameters for the shock shape, ¢
ond o,

Those equations also contain five variables which are eventually all functions
Those are l‘.b, Zb’ and F | Fb is also dependent on kdb and ch

b
which, however, are also functions of Tb and a . All those five variables are calcu-

of Pb, A Tb'

lated by subroutines during the process of the solution.

The system of equations also contains velocities, density, and pressure behind
the shock, namely Ugr Vor Por Pye They are all functions of free stream Mach number
M., and shock wave angle o, and degree of free stream dissociation a- They have to

1

be calculated also by special subroutines during the process of the solution.
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5.3 Numerical Calculation of the Parameters in the Flow Field
Between Shock and Cylinder Surface

5.3.1 Calculation of the Flow Along the Stagnation Streamline and the Stagnation
Point Condition

Before the numerical integration of the system of equations for the flow around
the circular cylinder can be started, the stagnation point parameters, serving as initial
values, must be determined. For this purpose, the governing equations are specialized
for the stagnation streamline, where 8 = 0 and U, T Y, T 0. The equation for conti-
nuity, r-momentum, rate equation, energy equation and equation of state constitute a
system of five equations for the five unknowns p, p, T, a, and v along the stagnation
streamline. After some elimination, the following set of three first-order ordinary

differential equations is obtained:

da _F (5.15)
dr v

2
ar 2 [v+ (8 0]-rpF[RTb-< )y (- p/pvh)] (5.16)
dr = rpvl_RZ (BT)CL (l-p/pv)J
P p v, F dr X[ (au) 5 17
'&;=:§ (Ba)Tv+(BT)adr LY %8 -0 (5.17)

Equations (5.16) and (5.17) still contain the unknown gradient of u in 8 -
direction, which for fixed @ = 0 is a function of the radiui coordingte r only. In
order to determine this gradient, use is made of the linear approximation for pu, which
was previously needed in order to derive eq. (5.9). After considerable calculation,
described in detail in Ref. 28, one finally obtains the expression
2, 20, (e )=+, =) 2 e ) [, 2 (n-1) 5.18)

2
e=0 PV e

Hence, we now have a system (5.15) through (5.17) together with the energy equation,
the equation of state and equation (5.18). The system of six equations can be solved

for any particuiar chosen value for € the stagnation point shock detachment distance.
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For the solution, a stagnation point pressure pp, must be assumed as a first trial, then
the system is integrated and iterated on p, until the assumed value p, agrees with that

resulting from the integration.

For both the integration along the stagnation streamline and for the integration
along the body surface (described in Section 5.3.2 ), a fixed-step Runge-Kutta
technique of fourth-order accuracy was used. One thousand steps were chosen for the
stagnation streamline fromthe shock to the stagnation point. All calculations were per~
formed on a UNIVAC 1107 high speed digital computer, which is located in the Univer-

sity of Alabama Research Institute.

5.3.2 Cadlculation of the Flow Variables Along the Cylinder Surface and Behind the Shock

After the stagnation point conditions have been obtained, as described in
Section 5.3.1 , the integration around the body is started with an unknown, but assumed
shock detachment distance € which must be iterated. The integration is done by the
same technique and on the same computer as described in Section 5.3.1. The step size
was fixed at 0.002 radians, and approximately 800 steps were used for the integration
from the stagnation point to the equator (8 = w/2). The equations for the variables
along the cylinder surface are strongly dependent on the selected value € and smooth
transitions of all variables from the subsonic to the supersonic fiow regime are only
obtained for a correctly chosen €. Depending on the case, between ten and fifteen
iterations were needed to determine € to four significant figures. Near the point
where the surtace veiocity rcaches the local speed of sound, the equations have a
singularity. For the cases of frozen and equilibrium flow, the singularity occurs ai ihe
sonic point; however, this is not true for non-equilibrium flow (Ref. 25). Previous
investigators (Ref. 21, 25, 27) have reported that the singularity is of the saddle point
type. In the present formulation of the problem, this was not apparent, and more
research in this direction seems to be necessary.

Once a smooth distribution of all variables in the entire subsonic region was
obtained, all dependent variables were extrapolated info the supersonic region by using
a second -order polynomial curve fit. The integration was then resumed and could, in

most cases, be carried out to the equator of the body, and in some cases even farther.
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5.4 Discussion of the Results of the Flow Around a Cylinder

5.4.1 Flow Along the Stagnation Streamline

Numerical results have been obtained for a number of cases, only a few of
which can be discussed here. For chemical non-equilibrium flow, the degree of dissoci-
ation and the temperature are particularly interesting parameters. Fig. 12 and 13 show
the distribution of o and T along the stagnation streamline behind the bow shock for a
flight speed of 4300 m/sec at an altitude of 30 km. Note that with Tl = 225°K, the
temperature scale goes from 4500 °K to 7650 °K. That means the non-equilibrium
temperature existing behind the shock for small bodies is about 3000 °K higher than the
equilibrium temperature existing for large bodies. It can be seen that, depending on
the size of the body, quite different regimes of non-equilibrium flow are encountered.
For relatively large bodies, a characteristic flow time is large compared to the local
chemical relaxation time, which causes the flow to reach the state of thermodynamic
equilibrium close behind the shock. On the other hand, for very small bodies, a
characteristic flow time is very short if compared to the relaxation time. In this case,
the flow remains essentially frozen ond equilibrates only near the stagnation point,
where the velocity approaches zero and the local residence time of a flow particle again
is large compared to the relaxation time. It was found that the flow always reaches
thermodynamic equilibrium at the stagnation point.

In both figures the present results from the integral method are compared with
data calculated by Conti (Kef. 30), wiic uscd an inverse method, also a basically
different approach, and somewhat different reaction rate constants. The air model was

the same as ours. The comparison is very gratifying.

5.4.2 Flow Around Circular Cylinder

It is already well known from perfect gas calculations that with increasing free
stream Mach numbers‘ the bow shock moves closer to the body. It is seen from Fig. 14
and 15 that in chemical non-equilibrium flow this trend is retained. Both figures alsc
indicate clearly that dissociation of the free stream, keeping ali other free stream
parameters unchanged, causes the bow shock to move away from the body. One reason
for this effect is that, for a dissociated free stream, the density behind the shock is

lower than for corresponding conditions without free stream dissociation (Ref. 29).
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The effect is seen to increase with decréasing free stream Mach number. Fig. 14 also
shows that the shock shape deviates considerably from a concentric circle, even where
the velocity in the shock layer isstill subsonic.

From Fig. 15 it is observed that the present calculations yield a stagnation
shock detachment distance which is much smaller, even for an undissociated free stream,
than the values obtained from perfect gas calculations (Ref. 21, 24). It should be noted
that the calculations for perfect gas by Archer, who used a one-strip solution, agrees
excellently with the one by Belotserkovskii, who used a three=strip solution, This indi-
cates that for this type of calculation, a one-strip solution yields very satisfactory
accuracy. |t is important to see that for a free stream Mach number of M] = 3, where
the bow shock does not yet cause appreciable molecular vibration in the shock layer,
the present calculation furnishes a value which is very close to the known perfect gas
results. Responsible for the effect that shock detachment distance of the present calcu-
lation yields smaller values than that for the perfect gas at Mach numbers approximately
4 to 7, is that our calculations included the energy of molecular vibration. For Mach
number 6.8, the present calculation, which includes dissociation, does not show any
degree of dissociation in the flow field (Fig. 17). Hence, the difference between the
present calculation and the perfect gos calculation must be the inclusion of the molecular
vibration energy in our calculations. Of course beyond Mach number 7, the influence
of the dissociation on the shock detachment distance will become more ond more pronounc-
ed. Again, ii is giatifying to <ee that for the high Mach number range (M] = 14.2) our
results agree closely with those of Conti (Ref. 30), which were obtained by an entireiy
different approach. It must be mentioned here that numerical results from our previous

investigation (Ref. 3) as reported for one particular case (M = 14; a, = 0.7) were found

]
to be incorrect due to an error in the computer program. However, all equations are
correct as published.

The velocity distribution along the surface of the cylinder as evident from
Fig. 16 is almost linear up to the sonic point. A distinct effect of free stream dissocia-
tion can be seen.

The degree of oxygen dissociation along the non-catalytic body surface is

presented in Fig. 17. For zero free stream dissociation, it is seen that at M, = 6.6

1
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no dissociation occurs along the body. The degree of dissociation increases strongly
with increasing Mach number and reaches about 0.95 at Mach number 14,2, Especially
for the high Mach number cases, it is seen that the recombination process dominates in
the subsonic regime as the flow expands around the body. The degree of dissociation
decreases slowly until, in the supersonic regime, the local residence time of a particle
becomes so small compared to the relaxation time that the flow freezes. With lower free
stream Mach numbers, this effect becomes less pronounced until, for the lowest case
shown, no change in composition at all is observed. For a better understanding, how-
ever, the non-equilibrium results should be compared to those for equil ibrium flow and
frozen flow, which are not available at the present time.

Finally, Fig. 18 and 19 show the temperature and the pressure distribution
along the surface of the cylinder for selected free stream Mach numbers with and without
“dissociation of the free siream. As expected, free stream dissociation has a strong effect
on the temperature but practically no effect on the pressure. Therefore, pressure distri-
butions are presented only for zero free stream dissociation. Note that for M, = 6.6 the

]

e . . : )
presence of free stream dissociation raises the stagnation temperature about 1000 “K,

5.5 Comparison with Flow Around a Sphere

So far, a large number of data have been presented for the circular cylinder.
There is no doubt that from an engineering point of view, the sphere or the spherically
canned cone has a greater interest, However, only a restricted number of data for the
sphere are available for non-equilibrium flow, including dissociaiiun (Rcf. 25). Fiaure
20 shows a comparison of the shock detachment distance between the cylinder and sphere
with the results from the sphere taken from Ref. 25. Note that the Mach number is near-
ly identical; the altitude, however, is markedly different. Both are valid for zero free
stream dissociation. it is seen that the shock wave for the sphere is much closer to the
body and has less than one hdlf of the distance of the shock wave for the cylinder.
Resuits with exact equal free stream conditions for both cases are not available at the
present time. The fact that the shock wave of the sphere is much cioser to the body
than for the cylinder should be true also for identical free stream conditions. It is

known to be the case for supersonic flow of a perfect gas. Note that the location of the

sonic point is very sensitive to free siream conditions, thus one cannot compare sonic

point locations of two bodies with different free stream conditions.
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6. NON-EQUILIBRIUM FLOW AROUND A POINTED CONE WITHOUT AND
WITH DISSOCIATION IN THE FREE STREAM

6.1 Review of Cone Flow Calculations for Real Gases

Over the past few years considerable effort has been devoted to the hypersonic
blunt body problem using both inverse and direct calculation techniques (See Section
5.). Comparatively fess interest has been paid to the high temperature real gas flow
past pointed bodies, which presently appears to be of growing interest.

In order to solve the problem of supersonic flow past any body, the conditions
behind the shock wave should be available for use as initial or boundary conditions,
depending on whether the governing equations are solved by integrating from the
assumed shock wave toward the unknown body (the inverse method), or from the known

body towards the unknown shock (the direct method).
| The classical example of supersonic pointed body flow is flow past an infinite
circular cone at zero angle of attack. The principle of conical supersonic flow, that
all parameters are constant on co-axial conical surfaces, was first conceived by A.
Busemann in 1928. For supersonic perfect gas flow, the parameters then are independent
of distance from the apex of the cone, and depend only on the polar angle.  Hence,
the flow parameters are described by a system of ordinary, non-linear differential
equations. Those differential equations, often referred to as the Taylor-Maccoli
equations, cannoi be solved in closed form. They were solved numerically first by
Taylor and Maccoll. An extended machine solution was given by Kopal in 1947, fora
perfect gas and supersonic flow. Much later Melnik (Ref. 31) used Dorodnitsyn's method
of integral relations to calculate supersonic and hypersonic flow of a perfect gas about
elliptical cones.

Real gas effects were considered first by Feldman (Ref. 32) in 1957 for disso-
ciated air in equilibrium, however, with verysimplifyingassumptions. Later Romig
(Ref. 33, 34) gave a numerical integration of the Taylor-Maccoll equation for
equilibrium flow of air, using tabulated thermodynamic data. Sedney and Gerber
(Ref. 35) calculated vibrational non-equilibrium flow over a cone using the method of
eristics. Recently Capiaux and Washington (Ref. 36) treated non-equilibrium

flow of an "ideal dissociating gas" (so-called Lighthill's gas) past a wedge, not a cone,
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also using the method of characteristics. The first application of Dorodnitsyn's integral
method to the real gas flow past pointed cones was given by South (Ref. 37). He
considered vibrationally relaxing flow of apure diatomic gas, but did not consider
dissociation.

The application of the method of integral relations to the problem of hypersonic
flow of air with non-equilibrium dissociation past a . .ited cone was first presented,
to our knowledge, by J. Thoenes (Ref. 13) and in Section 6 we will closely follow his
presentation. it can be shown that for a large range of velocities, altitudes, and cone
angles, an appreciable degree of oxygen dissociation behind the attached shock is
found, but nitrogen dissociation need not be considered as long as the boundary layer
is disregarded. Hence, his investigation uses the same simplified air model, consisting

of the three components O, 02, and N_ only, which was used in Sections 3, 4, and 5.

2

6.2 Basic Equations for the Flow Around a Sharp Biconvex Twodimensional
and a Pointed Axisymmetric Body

We start from the basic equations of steady adiabatic flow, neglecting
viscosity, heat conduction, and radiation in the same way as we did in Section 5.
The equation of state and the energy equation are the same and are not repeated here.
We transform the vector equation to an orthogonal curvilinear coordinate system with
coordinates tangential and nomal to the body surface. The equations are valid for
nlane flow (with i =0) and axisymmetric flow (with j=1). Fig. 2l shows the coordinate
system and shock geometry, of an amitrary pointed body of revoiuiion. Mcte that the
radius of curvature, R, is a function of x. In the equation, the curvature itself, K(x),
- is used. We are restricting ourselves to symmetric flow, that is no angle of attack.

The resulting equations are as follows:
Conservation of mass:

9 iy, 9 [

= + — + =

% (pur?) 3y [(1 Ky)per 0 6.1)
The equation for the x-momentum, y-momentum, and rate equation are not written

in the usual fom but transformed immediately to the "divergence form" which is required

for the application of the integral method.
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X~momentum:

%; [(p + puz)rj] +%§ [(1 + Ky)puvrj]
; dr
+ puerK - Jp [3{2 -y sin 8 g—g] =0 (6.2)

y-momentum:?

% (puvrj) +% [(1 + Ky)(p + pvz) rj]

2 j .
- (p + pu )KrJ - Jp (1 + Ky)cos 6 =0 (6.3)

rate equation:

(ouar J) +-§; [(1 + Ky)pvcn:j] - ordF(1 + Ky) = 0 (6.4)

O/IQ/
»®

The boundary conditions are very similar to those outlined in Section 5.2.2 for the
blunt body. In particular, the condition for flow tangency at the body surface is
given by:
vp = 0 (6.5)
The ossumption of frozen chemical composition across the shock and hence the con-
ditions behind the shock are the same, as in 5.22. We will later present one result
on equilibrium calculation for cone flow. For this, of course, equilibrium condition
across the shock was taken as a boundary condition.

There are also velocity relations across the shock, equivalent to those of the
blunt body, explained in Section 5.2.2. Also, Figure 2| indicates the relation be~

tween the shock coordinate Y, and shock wave angleo as:

s
dx
where, in general, ¢ and g are functions of x.

......

= (1 +Ky) tan (o - 6) (6.6)
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6.3 Application of the One=Strip Integral Method for the Flow Calculation
Around A Pointed Cone

We apply the method of integral relations as described by Dorodnitsyn (Ref.
20) to the partial differential equations which were written in divergence form (6.1,
6.2, 6.3, 6.4). We use the method in its simplest form with one-strip, which is
equivalent to a first order or linear approximation of certain groups of the variables
along the y coordinate. After considerable calculations the system of ordinary
differential equations (6.7 thru 6.12) is obtained. They are valid along the shock
and along the body surface. The subscript b refers to conditions at body surface,

while the subscript s as in Py U Vo P refers to the conditions behind the shock.

Continuity: idu l dpb . dr iduS . ' dps i drs
P ax T U'b dx PR ax T Ps T U ax TP
. . dy .
. b hy s -2 (1 4k r | (6.7)
- )Z (psusrs pbubrb) dx Y, ( ys) Ps¥s's
x-momentum: i du 2 i dpb dpb ' drb
0 @ tU'b dx b a1 TR EiC
du dp . dp dr 1 .
I 2 | _____S_ I _i H + __i_ - + uor l
¥ 2psusrs dx * Ys's dx T I i (ps Psusz) X Y [ (ps Ps s) s
d .
2, 1< 2, . o o qd8
Lo A h S L | £\ av
TPy TP b] ax %% (3K + ys) IPgYg sIf ® dx (6.8)
y-momentum:
i dps i dus + idvs + iouyv .dii_ =._]_.( U i)ir_s_
Ys"s's  Tdx * PeVs's dx PUSTs ax - 1Ps7s's dx y PVsYs's 7 dx

2, i i
[O*Ky) (p,*p )y -p]

[}
w< ™

. 2 H .
+K [Ps * Psus2) r: * (Pb TP )rL] +jeosd [ Ps (v + Kys) ¥ pb]
6.9)
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Rate:

d
bbb dx T Yb9Tb dx Tt bbb dx N e e

. du . dp . da dr
tparl—4uarl——4purl—2,jua 2.
8 s s dx 8 s 8 dx PgYs%s dx Pgls s dx =
. . dy
L 3 iy s 2 j i
A [psusasrs = Pp¥p% b] o= * A+ Ry )(Fy -';; VedgdPgTg + PpTh Fp
(6.10)
Energy:
h +-i u2 = h_ = constant (6.11)
b 2 b t :
State:
Pp = Pp R%, Ty (6.12)

The first three equations express conservation of mass and momenta independent of the
gas model. The rate equation expresses the non-equilibrium aspects of the flow under
consideration. This equation, together with the equation of energy and the equation
of state pertain to the specific gas model being applied here. Together with the
geometric relation (6.6) these constitute seven equations for the seven unknowns: uy ,
Pbs P Tps and ap, plus the shock parameters, o the shock angie, and Y ine
distance of the shock from the cone surface. The dissociation and recombination
rate constants enter in the source function F which is therefore a function of a, p,
and T. The enthalpy h is also a function of a and T.

The parameters behind the shock (with subscript s) have not been determined
yet. They must be calculated for each point along the shock, assuming either frozen
or equil ibrium composition downstream of the shock.

6.3.1 Frozen Flow Around a Cone

We are considering from now on flow around a cone. Hence we have to

specialize all equations above for | =1 and K= 0. For a perfect gas, the observation
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of straight shock waves and constant surface pressure in the conical flow field con-
firms the original concept of conical flow, that there is no length scale.

A frozen flow behaves like a perfect gas flow, only with a different
chemical composition and therefore a different ratio of specific heats, y. South (37) has
used these facts of a straight shock wave and constant properties along the cone
surface and shock surface to simplify the first approximation equations derived above.
By the same procedure, it was found that,although the rate equation (6.10) is meaning-

less, equations 6.7 through 6.9 reduce to simple algebraic equations as follows.

Continuity:
PpYp + PgVg [cot (0 - 8) + cot B1 =0 (6.13)
X-momentum:
2
20, up + 2[cot (o - 6) + cot OF Pgli vy + (py, - ps) =0 (6.14)

y-momentums
2
2 [cot 8 + cot (o - 8)] PgVs

- [cot &8 + 2 cot (o -~ 0)] (pb - ps) =0 (6.15)

Elimination of (pb - Ps) from the last two equations, and using the continuity
equation, furnishes

v
S

Yp =¥ ot 6 + 2 cot (o - 0) (6.16)

and subsequently all the other variables on the body surface in terms of the values
behind the shock. Equations 6.13, to 6.15, together with the energy equation (6. 1l)
and the equation of state (6.12), then represent five equations for the five unknowns
Upr P Tb' Py and o . Yecifying a, and cone angle 8, we can calcu-
late chemically frozen cone flow with the molecular vibrations either frozen, or in
equilibrium with the translational and rotational energy. By assuming a.|=0 and a
low free stream temperature, and by considering the molecular vibration frozen at
the free stream value,all the parameters obtained were in very good agreement with

the well known perfect gas resuiis { y=1.4).
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6.3.2  Equilibrium Flow Around a Cone

The same considerations as were pointed out above on frozen flow apply for
the case of chemical equilibrium flow, i.e., there is also no length scale, and hence
all parameters must be constant along lines through the apex of the cone.

Newman (Ref. 38) has used equations (6. 13) through (6.16) in connection
with approximated thermodynamic data from tables to calculate conical flow
parameters for air in thermodynamic equilibrium. Thoenes (Ref. 13) used the equilib-
rium relation as presented in equation (3.19). Equations (6. 13 through (6.15),
the energy equation (6.11), the equation of state (6.12), and the equilibrium equation
Upr Ppr TprPpr
a ,and o . The specification of the cone angle ©  allows the complete solution

(3.19) then constitute a system of six equations for the unknowns

of the problem. The actual numerical computation proceeds in a similar fashion as

for the frozen flow.

6.3.3 The General Case of Non-Equilibrium Flow Around a Cone

In the case of non-equilibrium flow past a cone, no definite statement can
be made about the shock shape or the behavior of other flow parameters. As was
shown in Section 2.1., any non-equilibrium flow will be non-similar. Hence we
cannot expect the flow field to be conical in the sense that the parameters are
comsiuiit along lines through the apex, or that the shock is a straight cone. All
variables must be calculated by integrating the conservation equations, togeinies
with the equation of state, in a step-by-step fashion along the length of the cone.
For a supersonic flow field, which is considered here, the equations are of
hyperbo!ic character and thus form an initial value problem. Initial values are
given by the frozen flow solution, and also the initial gradients can be derived as
functions of the initial flow parameters only.

The author used a method he referred to as  "the semi-exact procedure",
using the x-momentum equation (6.2), the rate equation (6.4) in their exact form,
and in addition the continuity equation (6.7) and the y-momentum equation (6.9) in
their approximate form. Hence, this set contains only two approximated equations

in contrast to the ordinary stardard procedure of the iniegra! method, where all four
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equations are approximated. Due to the boundary condition, eq. (6.5), it can be

seen from eq. (6.2) and (6.4) prior to their being written in the divergence form, that

- they may be used in their exact forms, leaving, as mentioned, only the continuity

~ (6.7) and the y~momentum eq. (6.9) as approximations.

Consequently, the following set of equations is obtained from the eq. (6.7),

(6.2), (6.9), (6.4), (6.11), (6.12), respectively.

Continuity:
r ﬂ-{-uri_pb+puir£+prfi+urip_+pui
Py dx b'b dx b b dx s s dx s s dx s s dx
l(pur-pur)c-i—ys--z;pvr
Y, s s bbb’ dx Y, 'sss
X=-momentum:
i L T
PLY ax dx
y-momentum:
dp du dv dr
Uvr ot pvr —s+pur -—S+puv —_— =
s s s dx s s s dx s ss dx s s s dx
dy
1 s 2 2
Y. (psusvsrs) dx Z [(ps * psvs) s " Pp'p i+ (ps * pb) cos @
Rate :
d_alg_zF
% d&x b
Energy:
1 2
hb+7 Ub—h
State:
P, = PRI Ty

(6.17)

(6.18)

(6.19)

(6.20)

(6.21)

(6.22)

Those are 6 equations for the 6 unknowns Upr Ppr Tb’ Ppr 9 along the body

surface and Ygr the

shockwave distance from the cone surface as explained before.

hb and Fb are known functions of p, T, a. The cone angle 8 must be given.
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In order to start the numerical integration of system (6.17) through (6.22),
the initial values and the initial derivatives of all parameters must be known at the
cone tip, x= 0 . The use of frozen shock conditions implies that the flow is frozen
at the tip of the cone; therefore, the frozen flow values serve as initial values.
When trying to solve for the derivatives however, indeterminate values occur at

x = 0. The derivatives are successfully obtained by applying L'Hospital's rule.

6.4 Presentation of the Results

6.4.1 Numerical Technique

For the numerical evaluation and presentation, all variables and coordi-
nates were made dimensionless as follows. The velocity components, pressure,
density, and temperature were made dimensionless by the free steam velocity,
free steam momentum flow (F’.l u.|2), free stream density, and free stream temperature,
respectively. The coordinates x and y were made dimensionless by a

characteristic length | defined by

(6.23)

Here the reciprocal value of Fy, represents a characteristic relaxation time. For the
cases presented, it is on the order of 4 10 " sec.

The equations were then piogrammed in dimensionless form. All calculo-
tions were performed on the UNIVAC 1107 computer located at the University of
Alabama Research Institute.

For frozen flow and equilibrium flow, the procedure is rather straight
forward. For chemical non-equilibrium flow, basically a fixed step Runge-Kutta
integration technique of fourth-order accuracy was used. The main program uses
essentially four subroutines; one for evaluating the thermodynamic functions, one
for the coefficients of the set of equations, one for solving the system of linear

equations for the derivatives, and the Runge-Kutta technique for the integration.
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6.4.2 Frozen Flow Results

The calculation of the frozen flow was necessary not only in order to
obtain initial conditions for the case of chemical non-equilibrium flow, but also for
use as an easy check of the system by calculation of cases at relatively low tempera-
tures, The results, not illustrated here, show that the shock wave angle, surface
velocity, and surface pressure respectively, obtained with the one-strip integral
method for undissociated, fully frozen flow of air, are in full agreement with the
exact results of the perfect gas, as it should be. Apparently, for hypersonic conical
flow, where the shock wave attaches closely to the cone in the shock layer, the flow
variables undergo only slight changes in the direction normal to the body surface; and
therefore, the one-strip (linear) approximation is quite adequate.

The influence of free stream dissociation on the angular shock layer thickness
for chemically frozen flow is shown in Fig. 22. It indicates that the thickness increases
with increasing free stream dissociation. Repeating the calculation with vibrational
equilibrium, instead of the frozen vibration, results in a smaller shock angle,
particularly at higher free stream velocities and larger cone angles (not shown here).
Free stream dissociation increases the surface pressure, and for complete free stream

oxygen dissociation and a semivertex angle of 8 = 10° at Mach number 5, this

_increase amounts to about 11%. Under the same conditions, the surface density

decreases about 10%. Frozen dissociation has little influence on the surface tempera-

ture (not shown in the presented graphs).

6.4.3 Equilibrium Flow Results

Conical flow parameters for thermodynamic equilibrium have been calculated
by Thoenes (Ref. 13) in order to demonstrate the validity of the simplified three
component air model for the range of cone angles and free stream conditions which
were considered. Also, in order to judge the results of the non-equilibrium flow
calculations, consistent asymptotic equilibrium values are needed. They have been
compared with, what may be called exact, results by Romig (Ref. 34), which were
calculated using Taylor-Maccoll's equations in connection with thermodynamic tables.
It is rather gratifying to see that the velocity, the pressure, and the temperature on

the cone surface are practically identical with the exact values. The shock wave
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angle and compressibility factor are somewhat higher, the surface density somewhat

lower than the exact value. However, the deviation in no case exceeds 2%. Hence,
for this investigation, the assumed gas model is shown to be a very good approximation
to atmospheric air. Because of this consistent agreement, no detailed figures with

equilibrium results are shown here (except Fig. 26).

6.4.4 Non-Equilibrium Flow Results

Some results for chemical non-equilibrium flow are presented in Figs. 23 thru
26. The case given in these figures for zero free stream dissociation corresponds to a

flight Mach number of M, = 20 at 40 km geometric altitude. For the second case

1

discussed, the free stream dissociation was arbitrarily taken to be a, = 0.5, leaving

1
all other free stream conditions unchanged. All variables in figures 23 thru 26 are
plotted versus the dimensionless distance along the cone surface. The asymptotic
equilibrium values indicated in all figures represent the results from the equilibrium
flow calculations, (Section 6.7.3) which are based on the assumption of a conical

shock wave. It is also noted that free stream dissociation affects finite rate non-
equilibrium flow. it should be mentioned that the free stream dissociation and the
resulting higher degree of dissociation in the shock layer causes the flow to relax

faster, i.e., the respective equilibrium state is reached closer to the tip than in the
case of zero free stream dissociarion.

The shock wave angle {not shown here) starts first with the frozen value, then
decreases, and then afterwards increases a fittle. However, all those changes are
within 0.1 or 0.2 degrees. Surface velocity approaches the asymptotic equilibrium
value very closely (within 0.7%). The surface pressure (Fig. 23) is clearly the variable
which is the least sensitive to relaxation effects. After a slight overexpansion, the
asymptotic equilibrium values are approached within less than 0.1%. Note that all
pressure changes are very small. The surface density (Fig. 24) is seen to increase
along the body, and it approaches the asymptotic equilibrium value from below. The
free stream dissociation reduces the density markedly. The surface temperature also
plotted in Figure 24, decreases rapidly away from the tip. Free stream dissociation

results in higher temperature. This behavior is, of course, closely related to that of
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the degree of dissociation, a, which is shown in Fig. 25. The graph illustrates the use-
fulness of the x-coordinate made dimensionless with the characteristic relaxation
length |. After ¢ =2 or 3 for the case of zero free stream dissociation, the flow field
dissociation is approximately in equilibrium (horizontal slope). For the case with free
stream dissociation a, = 0.5 the value is already reached at ¢ =0.5. It can be seen
that the initial gradient of the a versus ¢ curve at ¢ = 0 would reach a = 1at ¢ = 1
as it should according to the definition of ¢, usingl. Fig. 26 finally brings the
comparison between the shock layer thickness for non-equilibrium flow compared with
the two-limits of a frozen and equilibrium flow. The fact that the much more complex
calculation of the non-equilibrium flow produces a shock which is clearly bracketed by
the frozen value, from which it starts, and the equilibrium value is very gratifying. [t
is noted that the shock wave angle slowly approaches the angle for equilibrium flow.
Concluding the discussion of the results, we can state that the free stream
dissociation and chemical relaxation in the shock layer have a significant influence
on the behavior of most flow variables. Free stream dissociation is known to occur in
high temperature gosdynamic flow facilities; and it is, therefore, important to recognize

its effects when evaluating experiments performed in such facilities.
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7. SUMMARY

The salient features of theoretical hypersonic flow research, including the underlying
thermodynamic relations, carried out by the author and his co~workers over the past four
years, and some numerical results obtained are reported.

The meaning of equilibrium, non-equilibrium, and frozen flow are discussed. Non-
equilibrium flow fields generally are not similar for geometrically similar bodies. The flight
regions and the equilibrium values of temperature, pressure, and density, which occur behind
the normal shock of a vehicle re-entering the earth's atmosphere from a circular orbit or from
a lunar mission, are presented.

Real gas effects are treated using a simplified air model. The pressure equilibrium
constants for oxygen and nitrogen dissociation are derived, and explicit equations for the
degree of oxygen and nitrogen dissociation in equilibrium are given. The thermal equation
of state, the thermodynamic properties of energy and enthalpy, and the rate equation for
the net production of oxygen atoms are derived in some detail .

A simplified gas model valid in the range of oxygen dissociation is used to numeri-
cally calculate the inviscid flow through hypersonic nozzles, and, by the direct one=strip
integral method of Dorodnitsyn, the inviscid flow about the forward portions of blunt
bodies (up to the equator), and of pointed cones. Cases of equilibrium, non-equilibrium,
and frozen flow, with and without free stream dissociation, are presented. The effects of

the absolute size of a blunt body and the absolute length of a cone are investigated.

altitude are:
(1) Real gas effects can be detected beginning at M = 3 due fo molecular vibration,
and beyond M = 8 due to molecular vibration and dissociation. Dissociation of oxygen only

occurs in the range between Mach numbers 8 and 14, approximately, while, at higher Mach

numbers, nitrogen dissociation must be considered. (2) The shock detachment distance in
case of a real gas with an undissociated free stream is much smaller than in case of a

perfect gas. (3) Free stream dissociation causes the bow shock to move away from the body.
(4) For very small bodies (nose radius < 0.1 cm), and at M = 14, the non-equilibrium tempera-
ture in the main part of the shock layer near the stagnation streamline is about 3000°K higher

than the equilibrium temperature which exists for a sufficiently large body (nose radius = 10 em).
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Some results pertaining to a circular cone with attached shock are:

(1) For a large range of Mach numbers (up to M = 20) and cone semivertex angles
(up to © = 40°) at 40 km altitude, an appreciable degree of oxygen dissociation is found
in the flow field between shock and body, but nitrogen dissociation can be disregarded.
(2) For non-equilibrium flow, free stream dissociation markedly decreases the density along
the body, results in substantially higher temperature, slightly increases the shock angle,
and has little effect on surface pressure. The equilibrium flow results for a cone agree
within 2% with the values given by Romig. (3) For non-equilibrium flow, the shock wave
of the cone is curved and is bracketed by the location of the frozen shock wave on the

outside, and by the position of the equilibrium shock wave which is closer to the body.



8.

P xxzx3 T FAART

Zz

- 54

LIST OF SYMBOLS

Area, Throat Area

Constant, defined by Eq. (3.3)

Number of oxygen atoms per unit mass of gas
Dissociation energy [ J/kmol ] and [ J/kg ], respectively
Characteristic temperature of dissociation [ °K ]
Internal energy [ J/kg | or [ J/kmol |

Activation energy of dissociation [ J/kmol |

Mole fractions

Source function for oxygen atoms. Eq. (5.5)
Degeneracy factor

Enthalpy [ J/kg 1, also Planck's constant [ J ¢ sec |
Total enthalpy [ J/kg |

Moment of Inertia

Coordinate designator

Boltzmann's constant

Dissociation rate constant [ m3/portic|e . sec |
Recombination rate constant | mé/parl‘icle2 . sec |
Curvaiuie

Concentration equil ibrium constant | pari’icles/m3 ]
Pressure equilibrium constant [ N/m3 ]
Characteristic length { m ]

Mass flow [ kg/sec |

Mass of one particle of ith species |
Molecular weight of undissociated gas, also Mach number
Molecular weight of dissociated gas

Molecular weight of ith species

Number of particles of ith species per unit volume (undissociated gas)

Number of particles of ith species per unit volume (dissociated gas)

Nitrogen
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Avogardro's number | kmol_] |

Oxygen

Pressure [N/m2 ]

Partition function

Heat addition [ J/kg ]

Velocity vector

Radial and angular coordinates

Gas constant of undissociated gas [ J/kg °K ]
Universal gas constant [ J/kmol °K ]

Time [ sec ]

Temperature [ °K ]

Velocity components in x, y direction, respectively [ m/sec ] |
Net rate of production of oxygen atoms per unit volume of gas
Coordinates

Distance along axis downstream from nozzle throat
Compressibility factor

Degree of oxygen dissociation

Degree of nitrogen dissociation

Ratio of specific neuts

Local shockwave detachment distance [m]
Dimensionless shockwave distance from body
Dimensionless radial coordinate, r/r':>

Characteristic vibrational temperature [ °K ], and body contour
angle

Characteristic rotational temperature [ °K |
Symmetry Number

Stoichiometric coefficient for ith species
Density { kg/m3 ]

Oblique shock angle
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Subscripts

Free stream

Body surface

Behind the shock

Normal component

Tangential component, also total conditions
Third-body particle

Molecular nitrogen

Atomic nitrogen

Molecular oxygen

Atomic oxygen

Pertaining to oxygen dissociation
Pertaining to nitrogen dissociation

Standard conditions
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TABLE | AIR MODEL AND PHYSICAL CONSTANTS
Simplified Air Model
] 02 21.00 Vol %
2 N2 79.00 Vol %
3 M 28.8503 kg/kmol
4 Z =p /Rp T ] ;
5 oy 1.2872 kg/m
Standard Conditions
T 273.15 . °K
P, 1.01325 + 10 N/m?2
Universal Constants
R 8314,32 J/kmol °K
9 N, 6.02257 - 102 kmol~1
10 h 6.6237 + 10734 J+sec

Defined are Nos. 1, 2, 4. Calculated are Nos. 3 and 5. Nos. 6, 7
8, 9 are taken from Reference 39. No. 10 taken from Reference 15.

TABLE Il  ATOMIC AND MOLECULAR CONSTANTS
I Mclecular] Rotational | Vibrational { Char. Temp. | Electronic [Electronic
Particle| Weight |Temperature|Temperature| of Disscc. | Degeneracy| Energy
M n6. 0 D' g; €

kg/kmol °K °K °K °K

N2 28,0134 5.78 3390 113200 ] 0

O2 31.9988 4,16 2270 59366 3 0
2 11390

O 15.9994 5 0
3 228

1 326

The values for M are taken from Reference 39. All other values are
taken from References 14, 15, 16.
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SHOCK LAYER THICKNESS, vy, /I
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U, = 6390 m/sec
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DIMENSIONLESS CONE LENGTH ALONG SURFACE ¢ = x /I
(I = CHARACTERISTIC RELAXATION LENGTH)

FiG. 26. SHOCK LAYER THICKNESS y /1 AS FUNCTION OF CONE LENGTH
x/1 FOR FROZEN, NON-EQUILIBRIUM, AND EQUILiBRIUM FLOW AROUND A
CIRCULAR CONE (SEMIVERTEX ANGLE © = 25°%; | = 26.5m ).



